

Thermo Fisher SCIENTIFIC

Better, Stronger, Faster - your BY-onic Cytometer

August 15, 2018 Dolores Ciufo, FAS

	Instrument	Lasers (excitation beam); Pre-set configuration (nm)						Number of fluorescent detectors
		I Laser	II Laser	III Laser	IV Laser	V Laser	VI Laser	(by laser)
SPECTRAL Analyzer	Cytek Aurora	488	405	640	561	no	no	48 (14/16/8/10)
ADVANCED Analyzers	BD LSR II-1	488	405	355	640	561	no	16 (3/4/2/3/4)
	BD LSR II-2	488	405	445	640	561	no	16 (3/4/2/3/4)
	BD LSR- Fortessa	488	405	355	640	561	no	18 (3/5/3/3/4)
	ThermoFisher Attune NxT	488	561	no	no	no	no	7 (3/4)

Agenda

Attune® NxT™ Systems

Instrument

Autosampler

Fluidics and Optics

Best practices

Software overview

Traditional hydrodynamic focusing

Particle positioning in laser is important

Acoustic assisted hydrodynamic focusing

High sample input flow rates allow for more sample flexibility **12.5 μL/min** 1,000 µL/min Narrow particle focus = Narrow **Narrow particle focus = Narrow** distribution distribution Count Count Intensity CUS Intensity Prior to wrapping in sheath 5

Acoustic focusing

End-on view of capillary

Acoustic Focusing Capillary

Acoustic Waves – similar to ultrasound used to visualize a fetus *in utero*

•Flow rate can be increased while maintaining resolution

Clog resistant

Acoustic focusing

200 um diameter flow cell / ≥ 200 um fluid lines

Sample syringe delivery

Attune® NxT System

Status indicator lights

Green, Amber, Blue, Multicolor

Fluid connection ports for Attune® Autosampler

Sample injection tube

Sample tube (not included)

Sample tube lifter

Any tube that fits on the tube lifter will work

On board fluids

1ml Sample Syringe

Volumetric delivery: Accurate counts Clog resistance

Beam Profile: Flat-Top Lasers

- consistent laser energy excitation
- ensures resulting data is due to biological, not instrument variation

Flat-top vs. Gaussian Lasers

Flat top lasers reduce need for alignment adjustments

Blue Yellow - Configuration

Blue 488 nm laser 50 mW Yellow 561 nm laser 50 nm

9 parameters (7 fluorescent detectors)

Excitation Laser	Emission Filter (nm)	Channel	Recommended Dyes	Fluorescent Proteins
	530/30	BL1	Alexa Fluor* 488 FITC	eGFP Emerald eYFP
	590/40	BL2	PE-Alexa Fluor* 610 PE-Texas Red* PE	
Blue - 488 nm	695/40	BL3	PE-Alexa Fluor* 700 Tri-Color* PE-Cy*5.5 PerCP PerCP-Cy*5.5 Qdot* 705	
	585/16	YL1	PE	m0range RFP dTomato
Yellow - 561 nm	620/15	YL2	PE-Alexa Fluor* 610 PE-Texas Red*	mCherry DsRed mKate mStrawberry
	695/40	YL3	PE-Alexa Fluor* 700 PE-Cy*5.5 Qdot* 705 Tri-Color*	
	780/60	YL4	PE-Cy*7 Qdot* 800	

Fluorescent protein optimization filters

Default filters

mCherry 615/25 BP filter

GFP 510/10 BP filter

YFP 540/30 BP filter

525 dichroic LP

Fluorescent proteins

Table 1. Spectral characteristics of fluorescent proteins commonly used in flow cytometry.

Fluorescent protein	Excitation max (nm)	Emission max (nm)	Channel on Attune NxT Flow Cytometer
Azurite, TagBFP, mTagBFP, mTagBFP2, Cerulean, ECFP, TagCFP, AmCyan	383, 400, 400, 400, 433, 439, 458, 458	450, 456, 456, 456, 475, 476, 480, 489	VL1 (440/50), VL2 (512/25)
T-Sapphire	399	511	VL3 (603/48)
LSS-mKate1, LSS-mKate2	463, 460	624, 605	BL1 (530/30 or 510/10*)
TurboGFP, EGFP, TagGFP, emerald GFP (emGFP)	482, 483, 484, 487	502, 506, 507, 509	BL1 (530/30 or 510/10*)
TagYFP, TurboYFP, EYFP, Topaz, Venus, Citrine	508, 508, 514, 514, 515, 517	524, 524, 527, 527, 528, 529	BL2 (574/26 or 590/40) [†] or (540/30)*
mKOm, mOrange, mOrange2, Kusabira Green Orange, E2 Orange	548, 548, 549, 548, 540	559, 562, 565, 561, 561	YL1 (585/16)
DsRed, DsRed2, DsRed-Express, tdTomato, TagRFP, mStrawberry, mCherry, mKate, mKate2, TurboFP635 (Katushka)	553, 553, 553, 554, 555, 574, 587, 588, 588, 588	583, 583, 584, 581, 584, 596, 610, 635, 633, 635	YL2 (620/15 or 615/25*)
mPlum, HcRed, mRaspberry, mNeptune, E2Crimson	590, 592, 598, 599, 611	649, 645, 625, 649, 646	YL3 (695/40)

^{*}Bandpass emission filter used with the Invitrogen™ Attune™ NxT Fluorescent Protein Filter Kit (optional, Cat. No. 100022775). †The 574/26 filter set is standard on all Attune NxT instruments that are not configured with a yellow laser. The 590/40 filter set is included on Attune NxT instruments configured with the yellow laser.

Autosampler

- Plate formats: 96 or 384 well plates, standard or deep well <u>Round/U</u>, V-bottom and flat
- Plate experiments can include tubes
- Runs plate/records wells horizontally or vertically
- Mixes by pipetting up/down (user sets # of mixes)
- Probe is rinsed between wells (user sets # rinses)

Autosampler Mixing procedure

The user sets:

- The plate type
- The total sample volume
- The number of mixes (over mixing may cause bubbles)

The system defines:

- The liquid level in well
- The probe position
- The mixing method

Mixing sample by aspiration instead of shaking ensures homogeneity of the sample and maintains cell viability

Sample syringe / volumetric delivery

Paradigm shift

Sample is <u>not</u> automatically drawn from tube

Use the *Collection Panel Run Protocol* to control data acquisition

Sample is pulled from the tube when *Run* is clicked

Collection panel for plate experiment

Best Practice – dilute samples

Dilution is the solution!

Best practice: cell concentration and sample flow rate

The event rate will approach maximums stated in the column header when samples of stated concentrations are run at the flow rates below.

When acquiring large event files (i.e files with > 10⁶ events), plot parameters should not be changed while recording. Maximum file size: 20 Million events

Sample flow rate	Maximum sample concentration (35,000 ev/sec)	Maximum sample concentration (8000 ev/sec) – for accurate counts	Flow rate	
1000 μL/ minute	2.1 x 10 ⁶ cells/mL	0.48 x 10 ⁶ cells/mL	- Particles > 4 μm - Predominantly acoustic focusing	
500 μL/ minute	/ minute			
200 µL/ minute	6.7 x 10 ⁶ cells/mL	1.5 x 10 ⁶ cells/mL	- Particles > 2 μm- Predominantly acoustic focusing	
100 μL/ minute	minute 1.3 x 10 ⁷ cells/mL 3 x 10 ⁶ cells/mL		The second secon	
25 μL/ minute	25 μL/ minute 5.4 x 10 ⁷ cells/mL 1		- Small particles < 2 µm	
12.5 µL/ minute	1.0 x 10 ⁸ cells/mL	2.4 x 10 ⁷ cells/mL	- Best resolution from background for dimly positives assays - Smallest sample core - Predominantly hydrodynamic focusing	

Let your biology and data quality be your guide. If good data is obtained while running at 2-8,000 ev/sec, adjust the sample concentration and flow rate to maintain that.

Best practices – Use routines on the Instrument tab –

Follow on screen instructions

- Recover Sample returns unused sample volume back to the well or the tube.
- Rinse flushes system between samples. Runs automatically every time the SIP is lowered, but also can be user-initiated.
- Sanitize Attune SIP sanitizes the SIP and sample lines between samples or experiments
- Deep Clean thoroughly washes the system sample lines and flow cell between experiments
- Debubble clears bubbles from the fluidics lines of the cytometer
- Unclog back flush operation to remove clogs from the sample line.

Sample Recovery

Follow on-screen instructions

Anytime sample remains in the sample loop

Stop option has been reached Operator clicks stop

NOTE: Must select **recover sample** before lowering the tube lifter

Daily instrument cleaning guide

Note: Always wipe the outside of the SIP after doing a SIP Sanitize

Summary: Better – Stronger - Faster

Better – acoustic focusing
volumetric delivery
automated cleaning routines
intuitive software

Stronger – clog resistant engineering challenging samples more stable laser alignment

Faster - 6 sample flow rates from 12.5 to 1000 µl/min dilute samples rare event analysis