

Biochemistry, Biophysics, Chemical Biology, and Structural Biology

Gregory M. Alushin Sean F. Brady Steve L. Bonilla Brian T. Chait Jue Chen Paul Cohen Robert B. Darnell Seth A. Darst Titia de Lange A. James Hudspeth Tarun Kapoor Sebastian Klinge Shixin Liu Jiankun Lyu

Roderick MacKinnon Michael O'Donnell Charles M. Rice Viviana I. Risca Jeremy M. Rock Robert G. Roeder Michael P. Rout Vanessa Ruta Thomas P. Sakmar Sanford M. Simon Sohail Tavazoie Thomas Tuschl Ekaterina V. Vinogradova

Thomas Walz

ADOJ.

Kivanç Birsoy Junyue Cao Paul Cohen Robert B. Darnell Titia de Lange Elaine Fuchs Hironori Funabiki Tarun Kapoor Richard P. Lifton

Elaine Fuchs
Hironori Funabiki
Tarun Kapoor
Richard P. Lifton
Michel C. Nussenzweig
Michael O'Donnell
Charles M. Rice
Viviana I. Risca
Robert G. Roeder
Sanford M. Simon
Agata Smogorzewska
Hermann Steller
Sohail Tavazoie

Cell Biology

Brian T. Chait
Paul Cohen
Frederick R. Cross
Titia de Lange
Elaine Fuchs
Hironori Funabiki
Nathaniel Heintz
Tarun Kapoor
Gaby Maimon
Luciano Marraffini
Paul Nurse
Michel C. Nussenzweig
Michael O'Donnell

Paul Bieniasz

Kivanç Birsoy

Steve L. Bonilla

Charles M. Rice
Viviana I. Risca
Robert G. Roeder
Michael P. Rout
Thomas P. Sakmar
Shai Shaham
Amy E. Shyer
Sanford M. Simon
Agata Smogorzewska
Tim Stearns
Hermann Steller
Thomas Tuschl
Ekaterina V. Vinogradova
Lamia Wahba
Michael W. Young

1

Biochemistry, Biophysics, Chemical Biology, and Structural Biology

Scientists study how molecules interact to drive biological processes such as gene regulation, signal transduction, and enzymology. Their work involves delineating the properties of molecules, molecular complexes, and cells; using chemistry tools to manipulate disease mechanisms; and determining the structures of molecular assemblies at near-atomic resolution.

L

Cancer Biology

Work in this area focuses on the processes by which cancers arise, progress, and respond to therapy. Researchers seek to understand how cancer cells transform, metastasize, and interact with their microenvironment; study the mechanisms that drive disease; and develop innovative strategies to control cancer processes.

3

Cell Biology

A host of diseases are spurred by disruptions in the processes by which cells propagate or die, or perform other basic functions. Scientists working in this area dissect the genes and molecular pathways that control the cell cycle, apoptosis, protein trafficking, and many other cellular events.

Erich D. Jarvis

Daniel Kronauer

Cori Bargmann Kivanç Birsoy

Richard P. Lifton Shixin Liu Luciano Marraffini Paul Nurse Charles M Rice

Viviana I. Risca Jeremy M. Rock Robert G. Roeder Shai Shaham Agata Smogorzewska

Sidney Strickland Gabriel D. Victora Leslie B. Vosshall Lamia Wahba

Michael W. Young Li Zhao

Human Disease Mechanisms of

Paul Bieniasz Kivanç Birsoy Ali H. Brivanlou Jean-Laurent Casanova Paul Cohen

Barry S. Coller Robert B. Darnell

Titia de Lange Vincent A. Fischetti

Thomas Tuschl Jeffrey M. Friedman Ekaterina V. Vinogradova

James G. Krueger

Richard P. Lifton

Charles M. Rice

Jeremy M. Rock

Sohail Tavazoie

Sanford M. Simon

Agata Smogorzewska

Paul Bieniasz Sean F. Brady Jean-Laurent Casanova Brian T. Chait Vincent A. Fischetti James G. Krueger Luciano Marraffini Daniel Mucida Michel C. Nussenzweig Jeffrey V. Ravetch Charles M. Rice Jeremy M. Rock

Robert G. Roeder Michael P. Rout

Sanford M. Simon Alexander Tarakhovsky Gabriel D. Victora Ekaterina V. Vinogradova

Genetics and Genomics

Fundamental to all bioscience is the study of how genes and generegulatory processes contribute to development, behavior, and disease. Researchers working in this area employ genetic sequencing technology, bioinformatics, and animal models to pursue genome-wide comparisons, population genetics, functional studies, and more.

Immunology, Virology, and Microbiology

Investigations into the workings of the immune system are yielding progress against diseases such as cancer, autoimmune disorders, HIV, hepatitis C, and COVID. Work in this area covers the basic mechanisms of immunity, the biology of diseasecausing agents, and new treatment approaches from vaccines and antibiotics to personalized immunotherapies.

Mechanisms of **Human Disease**

Many labs are conducting research to understand the root causes of both rare and common diseases, and are developing new therapies based on their insights. Clinical science is enhanced by access to The Rockefeller University Hospital, which enables translational research involving human patients earlier than might otherwise be possible.

Neurosciences and Behavior

To understand how the nervous system develops and produces behaviors and cognition, neuroscientists study the brain from many perspectives, focusing on neuronal cells and circuits as well as high-level functions. In addition, labs are working on treatments for Alzheimer's, drug addiction, obesity, and other diseases.

Neurosciences and Behavior

Cori Bargmann
Jean-Laurent Casanova
Robert B. Darnell
Winrich Freiwald
Jeffrey M. Friedman
Charles D. Gilbert
Mary E. Hatten
Nathaniel Heintz
A. James Hudspeth
Erich D. Jarvis
Daniel Kronauer
Roderick MacKinnon

Marcelo O. Magnasco Gaby Maimon Priya Rajasethupathy Vanessa Ruta Thomas P. Sakmar Shai Shaham Hermann Steller Sidney Strickland Alipasha Vaziri Leslie B. Vosshall Michael W. Young Stem Cells, Development, Regeneration, and Aging

Ali H. Brivanlou
Junyue Cao
Jean-Laurent Casanova
Paul Cohen
Titia de Lange
Elaine Fuchs
A. James Hudspeth
Charles M. Rice
Viviana I. Risca
Shai Shaham
Amy E. Shyer
Eric D. Siggia
Agata Smogorzewska
Hermann Steller
Sidney Strickland

8

9

10

Ali H. Brivanlou
Jean-Laurent Casanova
Joel E. Cohen
Erich D. Jarvis
Daniel Kronauer
Stanislas Leibler
Marcelo O. Magnasco
Gaby Maimon
Michael O'Donnell
Vanessa Ruta
Li Zhao

Physical, Mathematical, and Computational Biology Joel E. Cohen
A. James Hudspeth
Erich D. Jarvis
Stanislas Leibler
Shixin Liu
Jiankun Lyu
Marcelo O. Magnasco
Gaby Maimon
Viviana I. Risca
Amy E. Shyer
Eric D. Siggia
Sanford M. Simon
Alipasha Vaziri
Li Zhao

8

Organismal Biology and Evolution

In studying biological processes from the perspective of entire organisms, populations, and ecosystems, scientists seek to reveal how complex traits and behaviors develop, and how diseases manifest. Their work covers the biology of vertebrate and invertebrate organisms and plants, the evolution of species, and other topics.

9

Physical, Mathematical, and Computational Biology

Research in this area is aimed at understanding the complex properties of biological and other systems, and at applying sophisticated analytic techniques to model phenomena from biological networks to weather patterns. Areas of interest to these scientists include systems theory, biological statistics and probability, population dynamics, and sensory processing.

10

Stem Cells, Development, Regeneration, and Aging

In researching how pluripotent stems cells differentiate, how embryos develop, how tissues replenish themselves, and how organisms age, scientists are laying the groundwork for broad progress toward tomorrow's medicines. Their work holds promise for the development of new disease models as well as innovative therapeutic interventions.

