The David Rockefeller Graduate Program offers a selection of courses, many of which students can choose based on their interests and area of thesis research. Organized by Rockefeller faculty and taught by scientists at the top of their fields, both from within and outside of the university, these courses provide a stimulating and dynamic curriculum that students can tailor to fit their personal goals, in consultation with the dean of graduate studies.

Biochemical and Biophysical Methods, I & II
GREGORY M. ALUSHIN, SETH A. DARST, SHIXIN LIU, and MICHAEL P. ROUT
This course presents the fundamental principles of biochemistry and biophysics, with an emphasis on methodologies. In addition, case studies are discussed, examining how physical and chemical methods have been used to establish the molecular mechanisms of fundamental biological processes. The course is offered in two consecutive semesters. Part I introduces biological macromolecules and experimental tools for dissecting their three-dimensional structures and assembly principles. Part II covers methods aimed at delineating the conformational fluctuations, chemical turnovers, and kinetic trajectories of biological complexes at molecular, cellular, and evolutionary scales.

Class length and frequency: Two-hour session, twice weekly
Method of evaluation: A five-minute oral presentation of a research proposal; a one-page written summary with specific aims for one semester and a three-page written review of a chosen method for the other semester

Cell Biology
SANFORD M. SIMON
This advanced course covering major topics in modern cell biology is taught by faculty and visitors who are specialists in various disciplines.

Class length and frequency: Three-hour lecture, once weekly; two-hour discussion, once weekly
Prerequisite(s): Good knowledge of textbook cell biology
Required reading: Molecular Biology of the Cell by Bruce Alberts et al., Molecular Cell Biology by James E. Darnell et al.
Recommended reading: Basic Histology by Luiz Carlos Junqueira et al.
Method of evaluation: Attendance, participation in the discussions, student presentations, and a final oral exam

Bioinformatics
THOMAS CARROLL
In this course, the analysis of high-throughput sequencing using R and Bioconductor will be introduced. Students will learn the fundamentals of data handling in R, review the standard high-throughput sequencing data types, and manipulate this data using the Bioconductor R libraries. The course will then step through the processing and analysis of published RNA-seq, ChIP-seq, and ATAC-seq data.

Class length and frequency: Three-hour session, twice weekly
Method of evaluation: Attendance and homework exercises twice weekly

Cell Cycle Control
FREDERICK R. CROSS and HIRONORI FUNABIKI
This seminar explores the current understanding of eukaryotic cell cycle control. Topics include the construction of a biochemical oscillator and overall structure of cell cycle control; positive and negative control of DNA replication; spindle morphogenesis and function; chromosome cohesion control; surveillance mechanisms (checkpoints) monitoring spindle and DNA integrity; and control of proliferation (start/restriction point control). The seminar relies heavily on studies in model organisms, but the emphasis throughout will be on aspects of cell cycle control conserved among eukaryotes.

Class length and frequency: 2.5-hour lecture and discussion, once weekly
Required reading: The Cell Cycle: Principles of Control by David O. Morgan; other readings as assigned
Method of evaluation: Attendance, homework exercises, and participation in the discussions

Cell Biology of Nuclear Processes
TITIA DE LANGE
The eukaryotic cell nucleus is a highly specialized organelle that carries the cell's genetic information and coordinates biological activities such as cell growth, metabolism, protein synthesis, and reproduction. This course will cover various aspects of nuclear function, with sessions focused on gene transcription (led by Robert G. Roeder), chromatin biology (C. David Allis), RNA processing and modification (Sohail Tavazoie), the nuclear envelope and nuclear pore complexes (Michael P. Rout), cell cycle control (Frederick R. Cross), DNA replication (Michael O'Donnell), DNA repair (Agata Smogorzewska), DNA damage response and telomeres (Titia de Lange), and chromosome segregation (Hironori Funabiki).

Class length and frequency: Two-hour lecture and discussion, once weekly
Prerequisite(s): Basic understanding of molecular biology and biochemistry
Required reading: To be assigned
Recommended reading: Molecular Biology of the Cell by Bruce Alberts et al. (selected chapters)
Method of evaluation: Attendance, participation in the discussions, and a take-home exam

Cellular Neurophysiology
GABY MAIMON AND VANESSA RUTA
This seven-week course will consist of 14 two-hour lectures, with problem sets. The course will focus on the biophysical properties of neurons and electrically excitable membranes. Topics covered...
will include the structure and function of ion channels, pumps/transporters, and neurotransmitter receptors, and how these contribute to resting potentials, action potentials and synaptic transmission. The course will end with discussions on how biophysical principles can help to explain sensory and circuit level properties in the nervous system.

Class length and frequency: Two-hour lecture and discussion session, twice weekly

Recommended reading: *Ion Channels of Excitable Membranes*, Third Edition, Bertil Hille; *Nerve, Muscle and Synapse*, Bernard Katz

Method of evaluation: Attendance, problem sets, and participation in the discussions

Cellular and Organismal Metabolism

KIVANÇ BIRSOY and PAUL COHEN

This course will cover fundamental aspects of cellular and organismal metabolism, as well as exciting new applications for diseases such as obesity, diabetes, and cancer. Lectures will be given by the course directors, as well as by outside experts in the field.

Specific topics covered will include mitochondrial metabolism in the context of health and disease, lipids and non-polar metabolites in normal and disease physiology, signaling and metabolism, transcriptional regulation of metabolism, metabolic syndrome, exploiting metabolic pathways for cancer therapy, metabolomic approaches to studying cellular and organismal metabolism, and immunometabolism.

Class length and frequency: Two-hour lecture and discussion, once weekly

Prerequisite(s): Undergraduate biochemistry (recommended)

Required reading: Biochemistry textbook and discussion papers

Recommended reading: *Lehninger Principles of Biochemistry* by David L. Nelson and Michael M. Cox; *Navigating Metabolism* by Navdeep Chandel

Method of evaluation: Attendance, participation in the discussions, and presentations

Chemical Biology

TARUN KAPOOR

The spirit of this course is to explore the complexities of modern biology using the tools of chemistry. The lectures cover amino acid chemistry, nucleic acid chemistry, posttranslational modifications of proteins, discovery and use of chemical probes to examine cellular mechanisms, membrane chemistry, chemical tools for imaging, and natural product biosynthesis.

Class length and frequency: Two-hour lecture and discussion, once weekly

Method of evaluation: Attendance, participation in the discussions, and midterm and final exams

Development of CNS Circuits

MARY E. HATTEN

This course focuses on the molecular and cellular mechanisms underlying the development of the nervous system. Topics include the evolution of the nervous system, specification of neural cell types, cortical histogenesis, the formation of neural circuits, and mechanisms underlying behavior. The course also considers the molecular genetics of human neuro-developmental disorders.

Class length and frequency: Two-hour lecture and discussion, once weekly

Method of evaluation: Attendance, participation in the discussions, and a final paper

Experiment and Theory in Modern Biology

SANFORD M. SIMON and TIM STEARNS

This course introduces first-year graduate students to the methods and principles behind current biological research. Students discuss preselected papers that illustrate methods of biological deduction. With guidance from their faculty mentors, students present and discuss papers and formulate conclusions about the experimental results. They also present a project based on one of the papers discussed in class. By the end of the course, students should be able to critically read a scientific manuscript and understand the principles used in interpreting scientific data.

Class length and frequency: Two-hour lecture and discussion, once weekly

Required reading: To be assigned

Method of evaluation: Attendance, participation in the discussions, and student presentations

Fundamental Immunology and Microbiology

MING LI

This course provides a comprehensive overview of basic immunology beginning with the innate immune responses, followed by a study of the main aspects of acquired immunity. Specific interactions of target cells and T cells that are regulated by the MHC molecule, and interactions between peptide antigens on the target cell and the antigen-specific T cell receptor, are studied. The generation and molecular structure of B and T cell antigen receptors, and signaling through immune receptors are covered in detail. Additionally, the development of antigen-specific T and B cells, and specific roles for some cytokines/lymphokines, are also explored. The latter part of the course covers in more depth T and B cell-mediated immunity and topics of clinical relevance, such as microbial immunity, allergy, autoimmunity, tumor immunology, congenital and acquired immunodeficiencies, transplantation immunology, and immunotherapy. All the topics are studied though lectures and in-depth review of selected articles.

Class length and frequency: 2.75-hour session, twice weekly

Required reading: *Janeway’s Immunobiology*, Ninth Edition, by Kenneth Murphy and Casey Weaver

Method of evaluation: Attendance, participation in the discussions, midterm and final exams
Fundamentals of Optics and Optical Microscopy for Biological and Biophysical Studies
ALIPASHA VAZIRI
This course aims to provide a rigorous yet intuitive understanding of the physics behind optical microscopy, with a particular emphasis on applications in modern biological and biophysical research. Students will learn the basics of setting up and aligning simple optical systems and will build their own fluorescence microscope from individual components.

Overall, the course will introduce fundamentals of geometric optics, including refraction, dispersion, Snell's law, lens maker equation, lens aberrations, matrix optics and ray tracing; fundamentals of beam optics, including Gaussian beams, diffraction, and resolution; concepts from Fourier optics, including spatial filtering, 4f imaging, evanescent waves, and Abbe resolution limit; microscopy, including light matter interaction, fluorescence and fluorescence microscopy, total internal reflection fluorescence (TIRF) microscopy, fluorescence confocal microscopy, two-photon microscopy, and calcium imaging; single-molecule fluorescence detection; and microscopy beyond the diffraction limit, including near-field imaging, stimulated emission depletion (STED) microscopy, and localization microscopy.

Class length and frequency: 1.5-hour lecture followed by a three-hour hands-on practical course, twice weekly over the course of three weeks

Prerequisite(s): Natural science background and basic knowledge of university-level calculus and physics

Method of evaluation: Class participation and laboratory performance

Genetics and Evolution
FREDERICK R. CROSS and DANIEL KRONAUER
This seminar covers the basic mechanisms of genetics and evolution, including the generation of mutations and genetic segregation, linkage, and recombination (with an emphasis on linkage and segregation in eukaryotes). The course also considers changes in population genotypes when these basic genetic mechanisms are operating in the presence or absence of selective pressure. Changes in population genotypes can have effects ranging from polymorphism at neutral loci to the evolution of distinct species. Such changes are also used in historical analysis to trace migrations, evolution, and coevolution in diverse biological contexts.

Class length and frequency: 2.5-hour lecture and discussion, once weekly

Required reading: To be assigned

Method of evaluation: Attendance, homework exercises, and participation in the discussions

Introduction to Programming for the Life Sciences
SETH SYBERG
This course, which assumes no previous programming knowledge, focuses on practical programming and data science skills using the Python programming language and associated scientific libraries. The course culminates in a final project directly applicable to the student's current research activities.

Class length and frequency: Two-hour lecture and lab, once weekly, and take-home programming assignments

Method of evaluation: Class participation, labs, assignments, and a final project

Mammalian Genetics
AGATA SMOGORZEWSKA
This course covers the genetics of bone marrow failure syndromes, cancer susceptibility, infectious diseases, obesity, diabetes, coronary heart disease, and neurodegenerative diseases. Also to be discussed are human gene mapping, disease modeling using mouse genetics, modern genetic tools including RNAi screening and genetic engineering using CRISPR, and ethical issues in modern human genetics.

Class length and frequency: Two-hour lecture and discussion, once weekly

Prerequisite(s): Principles of Genetics, Sixth Edition, by D. Peter Snustad and Michael J. Simmons (first six chapters)

Recommended reading: Thompson & Thompson Genetics in Medicine, Eighth Edition, by Robert L. Nussbaum et al.

Method of evaluation: Attendance, participation in the discussions, and take-home assignments

Mathematical Modeling
MARCELO O. MAGNASCO
This is an introduction to important topics in mathematical modeling and quantitative biology. A representative selection of subjects includes basic dynamics, fixed points and bifurcations, spiking neuron models, diffusion, chemical kinetics and systems biology, and stochastic simulation. Lectures introduce each topic and lab sessions cover programming methods in Python. The course is intended to be accessible to students who have taken Math Review for Biologists, or who have a similar level of facility with calculus, linear algebra, and basic Python programming.

Class length and frequency: Two-hour lecture and discussion, once weekly; two-hour coding lab session, once weekly

Method of evaluation: Completion of a final project

Math Review for Biologists
MARCELO O. MAGNASCO
This is an intensive skill-development course, starting with calculus and linear algebra and leading up to differential equations, Fourier transforms, and related computational methods for model simulation. A concurrent journal club explores the major historical papers as well as contemporary biological modeling papers proposed by the students in full line-by-line detail.

Class length and frequency: Two-hour lecture and discussion, once weekly; two-hour journal club, once weekly

Method of evaluation: Attendance and participation in the discussions and journal clubs
Microbial Pathogenesis
LUCIANO MARRAFFINI and JEREMY M. ROCK

Infectious diseases continue to be a leading cause of human morbidity and mortality worldwide as well as a major contributor to economic loss and the "poverty trap" in developing countries. This course focuses on the molecular mechanisms of host-pathogen interactions and pathogenesis of representative bacterial, fungal, and protozoan diseases. Topics include malaria, trypanosomiasis, toxoplasmosis, selected gram-negative and gram-positive bacterial infections, pathogenic mycobacteria, opportunistic mycoses, the evolution of pathogenicity and the impact of the host microbiota during microbial pathogenesis, and the development of antimicrobials and vaccines. The course is taught by Rockefeller and Weil Cornell Medicine faculty and selected guest speakers.

Each class includes a lecture, followed by one or two 20-minute student presentations on a paper suggested by the speaker in which they outline follow-up experiments. Lunch with the speaker follows in the Abby Aldrich Dining Room for interested students.

Class length and frequency: Two-hour lecture and discussion, once weekly
Method of evaluation: Attendance, participation in the discussions, individual presentations, and a three-page research proposal on one of the topics covered in the lectures at the end of the course

Molecular Basis of Cancer
SOHAJ TAVAZOIE

This course is designed to teach concepts pertaining to the molecular regulation of cancer formation and progression. Each lecture will be accompanied by a review and a research article to be discussed over lunch.

Class length and frequency: Three-hour lecture and discussion, once weekly
Required reading: The Biology of Cancer, Second Edition, by Robert A. Weinberg; other readings as assigned
Method of evaluation: Attendance, participation in the discussions, and a take-home final exam

Quantitative Understanding in Biology Short Course
JASON BANFELDER and LUCE SKRABANEK

This course will prepare students to apply quantitative and statistical techniques to the analysis of experimental data. It emphasizes both practical and theoretical skills, and will involve hands-on exercises and homework using the GraphPad Prism program. Students will be well-positioned to meet the emerging requirements of funding agencies for formally planned experiments and fully reproducible and documented data analysis methods.

Specific topics include graphical, mathematical, and verbal communication of quantitative concepts; selection of appropriate statistical tests and interpretation of their results; design of appropriately sized experiments; formulation, evaluation, and analysis of mathematical models of biological function with an emphasis on linear and nonlinear regression; determination of model parameters; and critical comparison of alternative models with regard to over-parameterization.

Class length and frequency: Nine-two-hour sessions, once weekly
Required materials: Laptop with free GraphPad Prism software
Recommended reading: Intuitive Biostatistics by Harvey Motulsky; The Art of R Programming: A Tour of Statistical Software Design by Norman Matloff; R for Everyone: Advanced Analytics and Graphics by Jared P. Lander; Practical Computing for Biologists by Steven H.D. Haddock and Casey W. Dunn
Method of evaluation: Take-home problem sets

Science Diplomacy: The Context for Thinking Globally about the Biological and Medical Fields
JESSE H. AUSUBEL and MANDÈ HOLFORD

The shorthand term "science diplomacy" spans wide-ranging activities connecting science and technology with international affairs. In addition to global health and medicine, this course considers the larger context of dealing with nations in conflict, innovation in the public and private sectors, and views of science diplomacy from outside the United States. This course will sample the current landscape of science diplomacy issues, programs, and organizations. Its goals are to help early-career biomedical scientists think more systematically about the global potential of their work, including ethical, political, and economic implications; and to acquaint them with the people, networks, and resources available for scientific cooperation, including nations with whom cooperation may be especially difficult. Some students will be invited to join a field trip in March to Washington, DC, to meet with prominent science diplomacy practitioners and tour relevant institutions.

Class length and frequency: Two-hour lecture and discussion, once weekly for six weeks
Required reading: To be assigned
Method of evaluation: Attendance and participation in the discussions

Seminars on Modern Biology

MEMBERS OF THE ROCKEFELLER UNIVERSITY FACULTY

This series of intensive, twice-weekly seminars is designed to give incoming graduate students a chance to interact with Rockefeller faculty. Participation is mandatory for and limited to first-year students. In each session, two or three faculty members give brief introductions to their research and engage in a student-led discussion.
Social Evolution and Behavior

DANIEL KRONAUER

This intensive course, held at The Rockefeller University Center for Field Research in Ethology and Ecology in Millbrook, New York, will include lectures, workshops, paper discussions, student presentations, and field outings. The course will explore complex questions from a variety of angles including genetics, behavioral ecology, ethology, neuroscience, and evolutionary and theoretical biology. It will cover several biological systems, ranging from single genetic elements, social microbes, insects, and vertebrates to mutualistic interactions between species.

Class length and frequency: One week
Required reading: To be assigned
Method of evaluation: Participation in the discussions, student presentations, and hands-on workshops

Stem Cells in Tissue Morphogenesis and Cancer

ELAINE FUCHS and ALI H. BRIVANOUL

This course aims to present and discuss key concepts in stem cell biology, drawing on research from planaria to humans. It covers the basic principles of stem cells, from self-renewal and asymmetric cell divisions to tissue development, homeostasis, wound repair, and cancer. In addition to the basic lectures, there will be eight guest speakers who are world-renowned leaders in the field. Following each of these lectures, speakers will lead a discussion with the class on preassigned papers relating to the research topic.

Class length and frequency: Two-hour class lecture and discussion, once weekly; one-hour guest lecture, twice weekly
Required reading: To be assigned
Method of evaluation: Attendance, participation in the discussions, and a final written mini-review

Systems Biology: Process, Relation, and Scale

AMY E. SHYER and ALAN RODRIGUES

Systems biology has been defined as the study of biological systems whose behavior cannot be reduced to the linear sum of their parts. Today, systems biology has become synonymous with studies of large numbers of components. However, vast datasets are not sufficient for a systems approach. A systems biology approach also attempts to understand how the whole or system-level properties emerge from the interactions between the parts. Using this approach, this course will investigate the formation, maintenance, and breakdown of biological systems. Invited guests will participate in discussions grounded in specific research areas within the fields of developmental biology, regeneration, cell biology, cancer, and neuroscience.

Students are expected to absorb the fundamental principles of systems biology including self-organization, emergence, complexity, and causality in networks. They will also be expected to articulate how such principles could play a role in defining contemporary research questions in the lab.

Class length and frequency: Two-hour sessions, once weekly for 12 weeks
Required reading: To be assigned
Method of evaluation: Participation in weekly discussions, as well as a written paper

Systems Neuroscience

WINRICH FREIWALD

This 14-week course will consist of 14 two-hour lectures, with problem sets. The course will follow information processing from sensory to motor systems and focus on specific mechanisms and general principles. Topics will include olfactory, auditory, and visual information processing, memory systems, decision making, internal states, attention and executive functions, spatial navigation, and motor systems. The course will build on the cellular neurophysiology class. Basic knowledge of the biophysics of neurons and their compartments is expected.

Class length and frequency: Two-hour lecture and discussion session, once weekly
Method of evaluation: Attendance, problem sets, and participation in the discussions

Virology

CHARLES M. RICE, PAUL BIENIASZ, and THEODORA HATZIOANNOU

In this course, Rockefeller faculty and guests give lectures and lead discussions about virology, with a major emphasis on the cellular and molecular biology of animal viruses. Topics include virus structure, replication, molecular genetics and gene expression, interactions with host cells, immunology, pathogenesis, viral vaccines, antiviral therapy, and resistance. A number of model systems are discussed, including cytocidal, steady state, and tumorigenic virus-cell interactions.

Class length and frequency: Two-hour lecture and two-hour journal club lunch discussion, once weekly
Required reading: To be assigned
Method of evaluation: Attendance, participation in the discussions, journal club presentations, and a written grant proposal

Supplementary Seminars, Tutorials, and Support Courses

Seminars and tutorials additional to those listed here are offered on demand. Students are welcome to speak with the dean of graduate studies to arrange training in any areas not covered by existing courses.

In addition, Rockefeller faculty and service departments offer a number of practical support courses. For example, students can learn about various aspects of computing and receive instruction in the efficient use of common software, as well as more complex computational tools.