The David Rockefeller Graduate Program offers a selection of courses, many of which students can choose based on their interests and area of thesis research. Organized by Rockefeller faculty and taught by scientists at the top of their fields, both from within and outside of the university, these courses provide a stimulating and dynamic curriculum that students can tailor to fit their personal goals, in consultation with the dean of graduate studies.

**Biochemical and Biophysical Methods, I & II**

GREGORY M. ALUSHIN, SETH A. DARST, SHIXIN LIU, and MICHAEL P. ROUT

This course presents the fundamental principles of biochemistry and biophysics, with an emphasis on methodologies. In addition, case studies are discussed, examining how physical and chemical methods have been used to establish the molecular mechanisms of fundamental biological processes. The course is offered in two consecutive semesters. Part I introduces biological macromolecules and experimental tools for dissecting their three-dimensional structures and assembly principles. Part II covers methods aimed at delineating the conformational fluctuations, chemical turnovers, and kinetic trajectories of biological complexes at molecular, cellular, and evolutionary scales.

**Class length and frequency:** Two-hour session, twice weekly


**Method of evaluation:** A five-minute oral presentation of a research proposal; a one-page written summary with specific aims for one semester and a three-page written review of a chosen method for the other semester

**Bioinformatics**

THOMAS CARROLL

In this course, the analysis of high-throughput sequencing using R and Bioconductor will be introduced. Students will learn the fundamentals of data handling in R, review the standard high-throughput sequencing data types, and manipulate this data using the Bioconductor R libraries. The course will then step through the processing and analysis of published RNA-seq, ChIP-seq, and ATAC-seq data.

**Class length and frequency:** Three-hour session, twice weekly

**Method of evaluation:** Attendance and homework exercises twice weekly

**Cell Biology**

SANFORD M. SIMON

This advanced course covering major topics in modern cell biology is taught by faculty and visitors who are specialists in various disciplines.

**Class length and frequency:** Three-hour lecture, once weekly; two-hour discussion, once weekly

**Cell Biology of Nuclear Processes**

TITIA DE LANGE

The eukaryotic cell nucleus is a highly specialized organelle that carries the cell's genetic information and coordinates biological activities such as cell growth, metabolism, protein synthesis, and reproduction. This course will cover various aspects of nuclear function, with sessions focused on gene transcription (led by Robert G. Roeder), chromatin biology (C. David Allis), RNA processing and modification (Sohail Tavazoie), the nuclear envelope and nuclear pore complexes (Michael P. Rout), cell cycle control (Frederick R. Cross), DNA replication (Michael O'Donnell), DNA repair (Agata Smogorzewska), DNA damage response and telomeres (Titia de Lange), and chromosome segregation (Hironori Funabiki).

**Class length and frequency:** Two-hour lecture and discussion, once weekly

**Prerequisite(s):** Good knowledge of textbook cell biology

**Required reading:** Molecular Biology of the Cell by Bruce Alberts et al., Molecular Cell Biology by James E. Darnell et al.

**Recommended reading:** Basic Histology by Luiz Carlos Junqueira et al.

**Method of evaluation:** Attendance, participation in the discussions, student presentations, and a final oral exam

**Cell Cycle Control**

FREDERICK R. CROSS and HIRONORI FUNABIKI

This seminar explores the current understanding of eukaryotic cell cycle control. Topics include the construction of a biochemical oscillator and overall structure of cell cycle control; positive and negative control of DNA replication; spindle morphogenesis and function; chromosome cohesion control; surveillance mechanisms (checkpoints) monitoring spindle and DNA integrity; and control of proliferation (start/restriction point control). The seminar relies heavily on studies in model organisms, but the emphasis throughout will be on aspects of cell cycle control conserved among eukaryotes.

**Class length and frequency:** 2.5-hour lecture and discussion, once weekly

**Prerequisite(s):** Basic understanding of molecular biology and biochemistry

**Required reading:** To be assigned

**Recommended reading:** Molecular Biology of the Cell by Bruce Alberts et al. (selected chapters)

**Method of evaluation:** Attendance, participation in the discussions, and a take-home exam

**Cellular Neurophysiology**

GABY MAIMON AND VANESSA RUTA

This seven-week course will consist of 14 two-hour lectures, with problem sets. The course will focus on the biophysical properties of neurons and electrically excitable membranes. Topics covered...
will include the structure and function of ion channels, pumps/transporters, and neurotransmitter receptors, and how these contribute to resting potentials, action potentials and synaptic transmission. The course will end with discussions on how biophysical principles can help to explain sensory and circuit level properties in the nervous system.

**Class length and frequency:** Two-hour lecture and discussion session, twice weekly

**Recommended reading:** *Ion Channels of Excitable Membranes*, Third Edition, Bertil Hille; *Nerve, Muscle and Synapse*, Bernard Katz

**Method of evaluation:** Attendance, problem sets, and participation in the discussions

### Cellular and Organismal Metabolism

**KIVANÇ BIRSOY and PAUL COHEN**

This course will cover fundamental aspects of cellular and organismal metabolism, as well as exciting new applications for diseases such as obesity, diabetes, and cancer. Lectures will be given by the course directors, as well as by outside experts in the field. Specific topics covered will include mitochondrial metabolism in the context of health and disease, lipids and non-polar metabolites in normal and disease physiology, signaling and metabolism, transcriptional regulation of metabolism, metabolic syndrome, exploiting metabolic pathways for cancer therapy, metabolomic approaches to studying cellular and organismal metabolism, and immunometabolism.

**Class length and frequency:** Two-hour lecture and discussion, once weekly

**Prerequisite(s):** Undergraduate biochemistry (recommended)

**Required reading:** Biochemistry textbook and discussion papers

**Recommended reading:** *Lehninger Principles of Biochemistry* by David L. Nelson and Michael M. Cox; *Navigating Metabolism* by Navdeep Chandel

**Method of evaluation:** Attendance, participation in the discussions, and presentations

### Chemical Biology

**TARUN KAPOOR**

The spirit of this course is to explore the complexities of modern biology using the tools of chemistry. The lectures cover amino acid chemistry, nucleic acid chemistry, posttranslational modifications of proteins, discovery and use of chemical probes to examine cellular mechanisms, membrane chemistry, chemical tools for imaging, and natural product biosynthesis.

**Class length and frequency:** Two-hour lecture and discussion, once weekly


**Method of evaluation:** Attendance, participation in the discussions, and midterm and final exams

### Development of CNS Circuits

**MARY E. HATTEN**

This course focuses on the molecular and cellular mechanisms underlying the development of the nervous system. Topics include the evolution of the nervous system, specification of neural cell types, cortical histogenesis, the formation of neural circuits, and mechanisms underlying behavior. The course also considers the molecular genetics of human neuro-developmental disorders.

**Class length and frequency:** Two-hour lecture and discussion, once weekly

**Required reading:** To be assigned

**Method of evaluation:** Attendance, participation in the discussions, and student presentations

### Experiment and Theory in Modern Biology

**SANFORD M. SIMON**

This course introduces first-year graduate students to the methods and principles behind current biological research. Students discuss preselected papers that illustrate methods of biological deduction. With guidance from their faculty mentors, students present and discuss papers and formulate conclusions about the experimental results. They also present a project based on one of the papers discussed in class. By the end of the course, students should be able to critically read a scientific manuscript and understand the principles used in interpreting scientific data.

**Class length and frequency:** Two-hour lecture and discussion, once weekly

**Required reading:** *Janeway’s Immunobiology*, Ninth Edition, by Kenneth Murphy and Casey Weaver

**Method of evaluation:** Attendance, participation in the discussions, and student presentations

### Fundamental Immunology and Microbiology

**MING LI**

This course provides a comprehensive overview of basic immunology beginning with the innate immune responses, followed by a study of the main aspects of acquired immunity. Specific interactions of target cells and T cells that are regulated by the MHC molecule, and interactions between peptide antigens on the target cell and the antigen-specific T cell receptor, are studied. The generation and molecular structure of B and T cell antigen receptors, and signaling through immune receptors are covered in detail. Additionally, the development of antigen-specific T and B cells, and specific roles for some cytokines/lymphokines, are also explored. The latter part of the course covers in more depth T and B cell-mediated immunity and topics of clinical relevance, such as microbial immunity, allergy, autoimmunity, tumor immunology, congenital and acquired immunodeficiencies, transplantation immunology, and immunotherapy. All the topics are studied through lectures and in-depth review of selected articles.

**Class length and frequency:** 2.75-hour session, twice weekly

**Required reading:** *Janeway’s Immunobiology*, Ninth Edition, by Kenneth Murphy and Casey Weaver

**Method of evaluation:** Attendance, participation in the discussions, midterm and final exams
Fundamentals of Optics and Optical Microscopy for Biological and Biophysical Studies

ALIPASHA VAZIRI

This course aims to provide a rigorous yet intuitive understanding of the physics behind optical microscopy, with a particular emphasis on applications in modern biological and biophysical research. Students will learn the basics of setting up and aligning simple optical systems and will build their own fluorescence microscope from individual components.

Overall, the course will introduce fundamentals of geometric optics, including refraction, dispersion, Snell's law, lens maker equation, lens aberrations, matrix optics and ray tracing; fundamentals of beam optics, including Gaussian beams, diffraction, and resolution; concepts from Fourier optics, including spatial filtering, 4f imaging, evanescent waves, and Abbe resolution limit; microscopy, including light matter interaction, fluorescence and fluorescence microscopy, total internal reflection fluorescence (TIRF) microscopy, fluorescence confocal microscopy, two-photon microscopy, and calcium imaging; single-molecule fluorescence detection; and microscopy beyond the diffraction limit, including near-field imaging, stimulated emission depletion (STED) microscopy, and localization microscopy.

**Class length and frequency:** 1.5-hour lecture followed by a three-hour hands-on practical course, twice weekly over the course of three weeks

**Prerequisite(s):** Natural science background and basic knowledge of university-level calculus and physics

**Method of evaluation:** Class participation and laboratory performance

Genetics and Evolution

FREDERICK R. CROSS and DANIEL KRONAUER

This seminar covers the basic mechanisms of genetics and evolution, including the generation of mutations and genetic segregation, linkage, and recombination (with an emphasis on linkage and segregation in eukaryotes). The course also considers changes in population genotypes when these basic genetic mechanisms are operating in the presence or absence of selective pressure. Changes in population genotypes can have effects ranging from polymorphism at neutral loci to the evolution of distinct species. Such changes are also used in historical analysis to trace migrations, evolution, and coevolution in diverse biological contexts.

**Class length and frequency:** 2.5-hour lecture and discussion, once weekly

**Required reading:** To be assigned

**Method of evaluation:** Attendance, homework exercises, and participation in the discussions

Introduction to Programming for the Life Sciences

SETH SYBERG

This course, which assumes no previous programming knowledge, focuses on practical programming and data science skills using the Python programming language and associated scientific libraries. The course culminates in a final project directly applicable to the student's current research activities.

**Class length and frequency:** Two-hour lecture and lab, once weekly, and take-home programming assignments

**Method of evaluation:** Class participation, labs, assignments, and a final project

Mammalian Genetics

AGATA SMOGORZEWSKA

This course covers the genetics of bone marrow failure syndromes, cancer susceptibility, infectious diseases, obesity, diabetes, coronary heart disease, and neurodegenerative diseases. Also to be discussed are human gene mapping, disease modeling using mouse genetics, modern genetic tools including RNAi screening and genetic engineering using CRISPR, and ethical issues in modern human genetics.

**Class length and frequency:** Two-hour lecture and discussion, once weekly

**Prerequisite(s):** Principles of Genetics, Sixth Edition, by D. Peter Snustad and Michael J. Simmons (first six chapters)

**Recommended reading:** Thompson & Thompson Genetics in Medicine, Eighth Edition, by Robert L. Nussbaum et al.

**Method of evaluation:** Attendance, participation in the discussions, and take-home assignments

Mathematical Modeling

MARCELO O. MAGNASCO

This is an introduction to important topics in mathematical modeling and quantitative biology. A representative selection of subjects includes basic dynamics, fixed points and bifurcations, spiking neuron models, diffusion, chemical kinetics and systems biology, and stochastic simulation. Lectures introduce each topic and lab sessions cover programming methods in Python. The course is intended to be accessible to students who have taken Math Review for Biologists, or who have a similar level of facility with calculus, linear algebra, and basic Python programming.

**Class length and frequency:** Two-hour lecture and discussion, once weekly; two-hour coding lab session, once weekly

**Method of evaluation:** Completion of a final project

Math Review for Biologists

MARCELO O. MAGNASCO

This is an intensive skill-development course, starting with calculus and linear algebra and leading up to differential equations, Fourier transforms, and related computational methods for model simulation. A concurrent journal club explores the major historical papers as well as contemporary biological modeling papers proposed by the students in full line-by-line detail.

**Class length and frequency:** Two-hour lecture and discussion, once weekly; two-hour journal club, once weekly

**Method of evaluation:** Attendance and participation in the discussions and journal clubs
Microbial Pathogenesis
LUCIANO MARRAFFINI and JEREMY M. ROCK

Infectious diseases continue to be a leading cause of human morbidity and mortality worldwide as well as a major contributor to economic loss and the "poverty trap" in developing countries. This course focuses on the molecular mechanisms of host-pathogen interactions and pathogenesis of representative bacterial, fungal, and protozoan diseases. Topics include malaria, trypanosomiasis, toxoplasmosis, selected gram-negative and gram-positive bacterial infections, pathogenic mycobacteria, opportunistic mycoses, the evolution of pathogenicity and the impact of the host microbiota during microbial pathogenesis, and the development of antimicrobials and vaccines. The course is taught by Rockefeller and Weill Cornell Medicine faculty and selected guest speakers.

Class length and frequency: Two-hour lecture and discussion, once weekly

Method of evaluation: Attendance, participation in the discussions, individual presentations, and a three-page research proposal on one of the topics covered in the lectures at the end of the course

Molecular Basis of Cancer
SOHAIL TAVAZOIE

This course is designed to teach concepts pertaining to the molecular regulation of cancer formation and progression. Each lecture will be accompanied by a review and a research article to be discussed over lunch.

Class length and frequency: Three-hour lecture and discussion, once weekly

Required reading: The Biology of Cancer, Second Edition, by Robert A. Weinberg; other readings as assigned

Method of evaluation: Attendance, participation in the discussions, and a take-home final exam

Quantitative Understanding in Biology Short Course
JASON BANFELDER and LUCE SKRABANEK

This course will prepare students to apply quantitative and statistical techniques to the analysis of experimental data. It emphasizes both practical and theoretical skills, and will involve hands-on exercises and homework using the GraphPad Prism program. Students will be well-positioned to meet the emerging requirements of funding agencies for formally planned experiments and fully reproducible and documented data analysis methods.

Specific topics include graphical, mathematical, and verbal communication of quantitative concepts; selection of appropriate statistical tests and interpretation of their results; design of appropriately sized experiments; formulation, evaluation, and analysis of mathematical models of biological function with an emphasis on linear and nonlinear regression; determination of model parameters; and critical comparison of alternative models with regard to over-parameterization.

Required reading: Intuitive Biostatistics by Harvey Motulsky; The Art of R Programming: A Tour of Statistical Software Design by Norman Matloff; R for Everyone: Advanced Analytics and Graphics by Jared P. Lander; Practical Computing for Biologists by Steven H.D. Haddox and Casey W. Dunn

Required materials: Laptop with free GraphPad Prism software

Method of evaluation: Take-home problem sets

Science Diplomacy: The Context for Thinking Globally about the Biological and Medical Fields
JESSE H. AUSUBEL and MANDÉ HOLFORD

The shorthand term "science diplomacy" spans wide-ranging activities connecting science and technology with international affairs. In addition to global health and medicine, this course considers the larger context of dealing with nations in conflict, innovation in the public and private sectors, and views of science diplomacy from outside the United States. This course will sample the current landscape of science diplomacy issues, programs, and organizations. Its goals are to help early-career biomedical scientists think more systematically about the global potential of their work, including ethical, political, and economic implications; and to acquaint them with the people, networks, and resources available for scientific cooperation, including nations with whom cooperation may be especially difficult. Some students will be invited to join a field trip in March to Washington, DC, to meet with prominent science diplomacy practitioners and tour relevant institutions.

Class length and frequency: Two-hour lecture and discussion, once weekly for six weeks

Required reading: To be assigned

Method of evaluation: Attendance and participation in the discussions

Seminars on Modern Biology
MEMBERS OF THE ROCKEFELLER UNIVERSITY FACULTY

This series of intensive, twice-weekly seminars is designed to give incoming graduate students a chance to interact with Rockefeller faculty. Participation is mandatory for and limited to first-year students. In each session, two or three faculty members give brief introductions to their research and engage in a student-led discussion.
Social Evolution and Behavior

**DANIEL KRONAUER**

This intensive course, held at The Rockefeller University Center for Field Research in Ethology and Ecology in Millbrook, New York, will include lectures, workshops, paper discussions, student presentations, and field outings. The course will explore complex questions from a variety of angles including genetics, behavioral ecology, ethology, neuroscience, and evolutionary and theoretical biology. It will cover several biological systems, ranging from single genetic elements, social microbes, insects, and vertebrates to mutualistic interactions between species.

**Class length and frequency:** One week

**Required reading:** To be assigned

**Method of evaluation:** Participation in the discussions, student presentations, and hands-on workshops

---

Virology

**CHARLES M. RICE, PAUL BIENIASZ, and THEODORA HATZIOANNOU**

In this course, Rockefeller faculty and guests give lectures and lead discussions about virology, with a major emphasis on the cellular and molecular biology of animal viruses. Topics include virus structure, replication, molecular genetics and gene expression, interactions with host cells, immunology, pathogenesis, viral vaccines, antiviral therapy, and resistance. A number of model systems are discussed, including cytocidal, steady state, and tumorigenic virus-cell interactions.

**Class length and frequency:** Two-hour lecture and two-hour journal club lunch discussion, once weekly

**Required reading:** To be assigned


**Method of evaluation:** Attendance, participation in the discussions, journal club presentations, and a written grant proposal

---

Systems Neuroscience

**WINRICH FREIWALD**

This 14-week course will consist of 14 two-hour lectures, with problem sets. The course will follow information processing from sensory to motor systems and focus on specific mechanisms and general principles. Topics will include olfactory, auditory, and visual information processing, memory systems, decision making, internal states, attention and executive functions, spatial navigation, and motor systems. The course will build on the cellular neurophysiology class. Basic knowledge of the biophysics of neurons and their compartments is expected.

**Class length and frequency:** Two-hour lecture and discussion session, once weekly

**Method of evaluation:** Attendance, problem sets, and participation in the discussions