2015–2016
THE ROCKEFELLER UNIVERSITY

Graduate Program in Bioscience
We invented the modern bioscience institute and we’ve spent 115 years perfecting it.
The Rockefeller University is a world-renowned biomedical research institute. We are dedicated to improving human health through transformative discoveries and advanced education in the life sciences.

Our graduate program provides a select group of 190 highly motivated students the opportunity to learn science in any of 78 laboratories working in 9 different research areas.

Together with 325 postdocs, 200 research and clinical scientists, and 1,050 clinicians, technicians, and staff, our students are a critical part of the collegial scientific community that makes Rockefeller unique among its peers.

Our scientists have won a collective 24 Nobel Prizes, and 41 percent have been elected to the prestigious National Academy of Sciences.

Students and faculty live and work on our beautifully landscaped 14-acre campus on Manhattan’s East Side, where they have access to 8 modern research buildings containing over 481,000 square feet of lab space.

We are a modern, thriving institution: over the past 10 years, we have invested over $2 billion in new facilities, scientific equipment, faculty recruitment, and research support.

Our students pay $0 in tuition.
A world-class institution, led by world-class faculty, in a world-class city.
Rockefeller graduate students are an essential part of the scientific community of over 2,000, including faculty who are internationally renowned experts in their fields. But it’s what happens when everyone works together that truly puts Rockefeller on the map: taken as a whole, publications authored by our scientists — many by graduate students — are among the most widely cited in the world.

A diverse, intellectual scientific village where students and faculty work together to make transformative discoveries

With 78 laboratories, Rockefeller is exactly the right size: big enough to achieve a critical mass, small enough that nobody gets lost. With no departments, and a unique collaborative culture, Rockefeller’s structure is designed to stimulate interaction between researchers from different disciplines.
A supportive, flexible academic program that puts the student experience first and fosters independence

To learn science, do science. It’s the foundation of our educational program and the key to our students’ success. The lab is where ideas are hatched, hypotheses tested, and lifelong collaborations formed. It’s where new knowledge is born and where tomorrow’s scientific leaders are forged.

Students who arrive with a specific mentor or project in mind may immediately join a lab; those who prefer to explore may rotate through several laboratories in their first year. Bench experience is supplemented by courses designed to provide foundations in interpreting scientific data and research ethics, as well as offer backgrounds in particular specialties.
A rich tradition of investment in high-risk, high-reward science that other organizations won’t fund

At Rockefeller, the formula for success is to hire the world’s best scientists and give them the resources and freedom they need to do their boldest work. Not every project will succeed, but the ones that do have the potential to transform the world.
Mentorship from a world-renowned faculty dedicated to excellence in research, and to training the next generation of scientists

The world’s brightest students should learn science shoulder-to-shoulder with the best professors in the world. Our faculty is passionate, curious, and energetic. They are also highly decorated: Rockefeller has been home to 24 scientific Nobel Prize winners over the years, more than all but three countries.
Cells and genes, not dollars and bills, are the focus of a Rockefeller education. Relieving worries about practical matters allows students more time to be creative scientifically. It also allows students the freedom to consider joining any laboratory, regardless of its budget.

Generous professional and personal support that allows students to take on learning, not debt

We provide a stipend, subsidized housing, health insurance, and access to on-site child care. Students receive an annual research budget and benefit from state-of-the-art, fully staffed resource centers devoted to bioimaging, genomics, high throughput screening, and drug discovery, among many others.
Career opportunities in academic research and far beyond

Graduate school is just the beginning. Whatever your path, the skills you’ll gain in critical thinking, experimental rigor, and analytical reasoning — not to mention the friendships and collaborations you’ll form — will serve you for a lifetime.
A location in New York City, the global epicenter of culture and commerce

Rockefeller’s serene campus belies its location at the heart of one of the world’s truly great cities, where easy access to museums, concerts, and theatre provide an artistic balance to scientific education. There are over 18,000 restaurants within the city limits.

New York City is also a burgeoning hub of bioscience activity, and its institutions receive among the highest levels of federal research funding in the country. Recent investments in the biotech industry have also made the city an attractive location for startups that are redefining medicine for a new era.
Research Areas

Rockefeller’s 78 laboratories are loosely clustered into nine research areas representing the broad fields of study that are being pursued most actively by the university’s scientists. Don’t call them departments — there are no chairs and there is no administrative hierarchy.

1. Chemical and Structural Biology
 Working to identify and characterize molecular assemblies involved in key biological processes, scientists use tools including cryo-electron microscopy, mass spectrometry, and X-ray crystallography. Their work to link DNA sequences to the protein architecture they encode sheds light on the complex chemical and physical transformations that underlie living systems.

2. Genetics and Genomics
 By studying the genetic basis of biological processes, researchers work to develop new understandings of the role that genes and genetic regulation play in development, behavior, and disease. The work harnesses sequencing and bioinformatics technologies that have recently made feasible the study of enormous data sets.

3. Immunology, Virology, and Microbiology
 The immune system lies at the heart of many critical areas of biomedicine, including infectious diseases, cancer biology, autoimmunity, and vaccine development. Rockefeller’s laboratories study critical aspects of the immune system, including antigen presentation, immunodeficiency syndromes, and DNA rearrangements that accompany the maturation of immune cell lineages.

4. Medical Sciences, Systems Physiology, and Human Genetics
 Translating novel scientific insights into new approaches for the prevention, diagnosis, and treatment of disease is the ultimate goal of biomedical research. Rockefeller’s clinicians study cancer, heart disease, infectious diseases, obesity, addiction, neurodegenerative disease, autoimmune disorders, and many others.

5. Molecular and Cell Biology
 Modern cell biology was founded at Rockefeller with the introduction of the electron microscope. Today, it focuses on how cellular and extracellular macromolecules interact to drive processes such as gene regulation, protein translation, intracellular transport, signal transduction, and organelle architecture.

6. Neurosciences and Behavior
 Rockefeller scientists study the nervous system from many perspectives, from the isolation of molecules and cells mediating neural function and development, to the study of the cellular ensembles engaged in high-level sensory processing, to the discovery of mechanistic links between the biology of the brain and particular behavioral states.

7. Organismal Biology and Evolution
 Scientists study the biology of vertebrates and invertebrates, and plants, or the evolution of species over time. Looking at genetic and molecular biology from the perspective of entire organisms, ecosystems, and ecologies reveals how complex traits and behaviors develop and how disorders may afflict populations.

8. Physical, Mathematical, and Computational Biology
 Rockefeller’s physical and mathematical biologists are working to understand the physical properties of biological systems and to apply physical intuition to the modeling of biological networks. Physical laboratories are also studying systems theory, biological statistics and probability, population dynamics, and sensory processing.

9. Stem Cells, Development, Regeneration, and Aging
 The identification of conserved molecules that control the cell cycle and the growth of embryos has resulted in significant advances to our understanding of how pluripotent stem cells differentiate and how embryos transform into complex organisms. This field holds promise for the development of advances to fight aging and disease.
Research Areas

Rockefeller’s 78 laboratories are loosely clustered into nine research areas representing the broad fields of study that are being pursued most actively by the university’s scientists. Don’t call them departments — there are no chairs and there is no administrative hierarchy.

1. Chemical and Structural Biology

Working to clarify and delineate processess involved in key biological functions, structural biologists use tools including cryo-electron microscopy, magnetic resonance spectroscopy, crystallization, and mass spectrometry. They work to fold DNA sequences into the correct architectures these molecules should adopt in the complex chemical and physical transformations that underlie life.

2. Genetics and Genomics

By studying the genetic basis of biological processes, researchers each surveys new understandings of the rules that genes and genetic interactions play in development, behavior, and disease. The web between sequencevarying and transforming technologies that have recently made this study of neuronal data only.

3. Immunology, Virology, and Microbiology

The immune system is the heart of many critical areas of systems biology, including infectious diseases, cancer biology, autoimmunity, and vaccine development. Rockefeller laboratories study all aspects of the immune system, including antigen presentation, immunodeficiency syndromes, and the DNA modifications that accompany the evaluation of vaccine cell design.

4. Medical Sciences, Systems Physiology, and Human Genetics

Tracing new scientific insights to new approaches in the prevention, diagnosis, and treatment of diseases, this group of laboratories researches Rockefeller, including cancer, heart diseases, infectious diseases, obesity, diabetes, neurodegenerative disease, and many others.

5. Molecular and Cell Biology

Modern cell biology is dedicated to understanding the basic processes that govern cell behavior. The Rockefeller Cell Biology group explores the molecular mechanisms that govern cell behavior, including cell cycle, transcription, and signaling pathways.

6. Neuroscience and Behavior

Rockefeller University scientists study the nervous system from many perspectives, from the evolution of vertebrates and mesodermal neural crest development. In this study, the ultimate questions engaged in high-order brain processing, the discovery of molecular brain functions that underlie behavior and sensation.

7. Organizational Biology and Evolution

Among the scientists, the study of evolutionary biology and complex cellular organization and genetics, or the evolution of species from microorganisms that live in the gut and their interactions with the environment.

8. Physical, Mathematical, and Computational Biology

Rockefeller’s physical and mathematical biologists are working to understand the physical processes underlying biological data, and to apply physical techniques to the understanding of biological systems. Physical scientists also study systems that biologists describe statistically and physically, population dynamics, and energy conversion.

9. Stem Cells, Development, Regeneration, and Aging

The identification of stem cells that control the cell cycle and tissue-specific differentiation has led to significant advances in our understanding of these processes and genetic diseases, and has opened untold numbers of complex organisms. The Rockefeller focus is on those processes that are relevant to aging and disease.

10. Physical, Computational, and Evolutionary Biology

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

11. Cell Biology, Cancer Research, and Human Genetics

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

12. Neurobiology, Neuroscience, and Behavior

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

13. Organizational Biology, Evolution, and Development

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

14. Physical, Mathematical, and Computational Biology

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

15. Stem Cells, Development, Regeneration, and Aging

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

16. Physical, Computational, and Evolutionary Biology

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

17. Cell Biology, Cancer Research, and Human Genetics

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.

18. Neurobiology, Neuroscience, and Behavior

With a focus on the interactions between physical processes and evolutionary biology, researchers study the origins of novel cellular and developmental processes, and the evolution of complex organisms.
More than a degree, more than a career. An education that inspires excellence.
“When I left after my interview, the security guard saw my suitcase and said, ‘I hope you come back.’ That experience made the decision for me. Everyone here cares.”

As an undergraduate, Jingyi Chi was torn between biology and psychology. But as she learned more about molecular biology, she became drawn to the opportunity to observe nature in its most distilled form. She developed a passion for the tiny, elegant systems known as cells, which, unlike thoughts, can be directly observed and manipulated.

Paul Cohen’s lab, which focuses on obesity, gave her the opportunity to examine the objects of her fascination, using molecular and genetic techniques to investigate the difference between white, beige, and brown fat cells, and to probe their ability to burn fat and dissipate heat. Having joined the Cohen lab just a few months after it opened, Jingyi has also become something of an entrepreneur, working with Paul to select equipment, establish protocols, and help get the nascent laboratory up and running.

“STUDENT

Dylan Kwart
FOURTH-YEAR STUDENT

“I was enamored by a place that was so intimate and focused on the science.”

Despite being in the heart of New York City, Rockefeller can feel like a small town. It was just the kind of place that Dylan Kwart, coming from Toronto and the University of Ottawa, was looking for. First introduced to the university through the Summer Undergraduate Research Fellowship, Dylan deferred his acceptance in order to do a year-long master’s program in neuroscience at Oxford University. It was preparation for what he knew he’d be working on at Rockefeller: the neurobiology of aging. Now, in Marc Tessier-Lavigne’s lab, Dylan is using induced pluripotent stem cells to look at Alzheimer’s and other neurodegenerative illnesses in human cells, rather than animal models. He hopes to determine the genetic and molecular mechanisms involved, and ultimately to find new therapies.

Agata Smogorzewska
ASSOCIATE PROFESSOR

“I want to be in an environment that stimulates my thinking and improves my work. Rockefeller pushes you to become better than you think you can be.”

Before Agata Smogorzewska joined the Rockefeller community the first time, as a graduate student, she had an argument with the dean. She remembers how, during her interview, he challenged her opinion on a minor point related to her research—the origin of transfer of an F-plasmid during bacterial conjugation. The exchange left her with the impression that, at Rockefeller, science matters more than anything else, and everyone, even students who are not yet students, have ideas worthy of debate.

She kept these lessons in mind ever as her interests evolved over the years. As a graduate student in Titia de Lange’s lab, she studied a component of the complex that guards and maintains telomeres, the protective caps on chromosomes. As a postdoc, she became interested in another way cells protect the integrity of their genomes: DNA repair. And now, having returned to Rockefeller as a faculty member, she uses rare genetic diseases caused by disruptions in this process as a way of investigating how DNA repair works. Agata’s philosophy of mentorship—the aspect of her job she values most—remains informed by that initial lesson of almost 20 years ago. She encourages in her students a steadfast focus on science and a willingness to be open to new ideas no matter their source.
Kang Liu
ASSISTANT PROFESSOR, COLUMBIA UNIVERSITY

“At Rockefeller, there is a tremendous effort to nurture students’ curiosity. I hope to inspire that same confidence in my students.”

Kang Liu’s experience at Rockefeller was, to use her word, transformative. Kang joined Ralph Steinman’s lab as a graduate student in 1998, studying dendritic cells with the Nobel-winning scientist who discovered them, and then spent six years in Michel C. Nussenzweig’s lab as a postdoc and research associate, sharpening her skills in molecular immunology.

Both labs, she says, were nurturing and encouraging in such a way that she was able to blossom as a scientist. Both mentors encouraged her to trust her instincts and pursue her intuition. The university also supported her when she became a mother, with affordable family housing and day care.

Kang’s new position in the department of microbiology and immunology at Columbia University, just a few miles uptown, has been an opportunity to shift into the role of mentor herself. It’s also allowed her to continue working with dendritic cells, asking questions about how their replenishment is controlled by signaling factors in the blood.

Marc Tessier-Lavigne’s journey into neuroscience began a few hundred miles off the coast of Newfoundland, aboard the Queen Elizabeth II. While the captain set a course for Southampton—and Marc for Oxford—he had neither set his plans to pursue a Ph.D. in physics. By the time he arrived, he had declared a new program of study and had embarked on a path that would eventually expose him to neuroscience. “The brain is the most complex and fascinating organ in the body, and the thought that one could deconstruct and resolve that complexity was thrilling,” Marc recalls. “My career was set.”

Marc held faculty posts at the University of California, San Francisco, and Stanford, and, from there, moved to Genentech, the world’s largest biotech company, where he served as chief scientific officer. He became Rockefeller’s president in 2011. Although the evolution of his career may seem unconventional, it’s exactly the type of curiosity-fueled trajectory that Rockefeller’s culture is designed to nurture. For Rockefeller faculty and students, specialization is less important than inquiry. Marc’s counsel, to his students and his colleagues, is to let the science be your guide.

Marc’s scientific interest is in how neural circuits develop and form connections. His interest as an academic leader is in how scientists themselves form connections, collaborating to move projects forward and crossing traditional boundaries—such as those between academia and industry—to bridge the gaps between basic research and translational work.

“Rockefeller’s administration exists solely to support its science and its scientists. Our administrators know firsthand what it takes to keep a lab running smoothly.”

Marc Tessier-Lavigne
PRESIDENT
"At Rockefeller there is a firm institutional commitment to making our graduate program the greatest in the world. If we can make a case for how something benefits our program or our students, all we have to do is ask and we’ll get it."

In most places, being a dean means paperwork, registrations, and dealing with complaints. It means directing most of your efforts to the small handful of students that need extra attention. Rockefeller’s two deans spend little of their time on paperwork and most of it getting to know students one-on-one. They devote their energy to becoming a part of every student’s professional life and helping them chart a course that makes sense for their unique strengths and goals.

Sid Strickland, a neuroscientist who maintains an active lab devoted to understanding Alzheimer’s disease, has been dean of graduate and postgraduate studies since 2000, but his roots at Rockefeller extend all the way back to 1973 when he first joined the university as a research associate. He moved to Stony Brook University but returned to Rockefeller when the opportunity to lead the graduate program emerged. “I’ve always had a deep affection for the place,” Sid says. “It’s the only place I’ve seen where the focus is truly on accomplishment, rather than on peripheral concerns.”

Emily Harms, who was a graduate student at Stony Brook and moved to Rockefeller for her postdoc, accepted the job of associate dean in 2004. Her experience as a graduate student, which she recalls as a great time in her life, inspired her to devote her career to education, and to helping other students succeed. “A lot of my work is about listening to what students want and helping them put a plan in place to achieve it,” she says.

Rod MacKinnon

PROFESSOR

“When others told me that my scientific aspirations were unrealistic, Rockefeller welcomed me, embracing my philosophy that I would rather fail trying than never try at all.”

Like many of his peers, Rod’s path to science began as a child, with curiosity driving scientific explorations of rock collections and pond scum. He discovered biochemistry as an undergraduate at Brandeis University, and from there his career was a series of unconventional choices. He studied medicine but never practiced it. He launched a successful lab at Harvard devoted to functional studies of potassium ion channels, which move signaling molecules across cell membranes. But within a few years, he determined a different approach was needed: to truly understand ion channels he needed to understand their molecular structure. He dropped what he was doing and started over.

Rod moved to Rockefeller and learned x-ray crystallography, a difficult technique in which large proteins must be carefully purified and crystallized before they are bombarded with radiation.

This structural work was enormously frustrating, and then, eventually, an astonishing success. Eight years after moving to Rockefeller, Rod was awarded the Nobel Prize. Rod’s lab today remains a busy place, with postdocs and graduate students applying new structural techniques—including, recently, cryo-electron microscopy—to the study of a wide variety of ion channels.

Waring “Buck” Trible

THIRD-YEAR STUDENT

“It’s an exciting time to do genetics, and Rockefeller is at the forefront. Profound discoveries are going to be made, and I want to be a part of that.”

Waring “Buck” Trible has been fascinated by ants since his days as a camp counselor in the Appalachian Mountains of Virginia, where he was tasked with teaching kids about insects. At the University of Georgia, he majored in ecology and entomology and became increasingly intrigued by using genetics to understand evolution. That interest brought Buck to Daniel Kronauer’s lab, where he plans to use a new tool for genome engineering called CRISPR, to study caste determination, the process that governs whether and larvae grow up into workers, soldiers, or queens, and how that factors into their roles in the colony.
Sohail Tavazoie
ASSOCIATE PROFESSOR

‘As a scientist at Rockefeller, you have the freedom to pursue whatever questions you want from any biological perspective that interests you. You don’t get pigeonholed into a particular scientific discipline.’

Sohail Tavazoie’s interest in biology began out of frustration. As a medical student on an oncology rotation, he realized that most cancer cells weren’t deadly. Just one out of every ten thousand or so — those capable of traveling from the original tumor and establishing a new colony in a new organ — were killing most of his patients. Why weren’t more people looking at what made those cells special?

As a postdoc at Memorial Sloan Kettering, and after his move across the street to Rockefeller, Sohail began asking fundamental questions about how cancer metastasizes. His approach integrates many fields, including clinical observations, genomics, and cellular and molecular biology, for a systemic understanding of metastasis.

In this way, his lab has linked the silencing of certain small RNAs with the spread of cancer cells, and has begun to develop therapies based on these RNAs that they hope to eventually test in the clinic.

Vicky Moya
FOURTH-YEAR STUDENT

“To be able to design an experiment that addresses very specific questions, carry it out, and see the results — I don’t see how any other type of work could possibly be as much fun.”

Vicky Moya can’t imagine being anything but a scientist. Vicky studied neurobiology at the University of Texas, Austin, and rotated through several neuroscience labs at Rockefeller before settling in Nathaniel Heintz’s, where she uses a variety of tools to target neuron populations in the neurodegenerative disorder ALS.

Vicky, who has a competitive fellowship from the National Science Foundation, takes full advantage of Rockefeller’s scientific resource centers, which provide access to technologies and expertise that individual labs can’t.

“We both learned that to be a good role model, you have to work as hard as you expect the people in your lab to work. Rockefeller opened our eyes to how science could and should be done.”

It was the science that brought Helen Bateup and Dirk Hockemeyer to Rockefeller in the early 2000s. Helen, from Pennsylvania, and Dirk, from Germany, were drawn by the opportunity to conduct innovative research and work with the scientists conducting it. But it was an elevator ride — Dirk, in Titia de Lange’s lab, worked one floor above Helen, who was in Paul Greengard’s — that brought the two together.

Now the couple is close geographically and scientifically. Both joined UC Berkeley in 2013 to begin labs of their own. Dirk studies telomeres — repetitive sequences of DNA that protect the ends of linear chromosomes from molecular attack — and their role in tumors, aging, and tissue homeostasis. Helen is researching how genetic mutations associated with neurodevelopmental disorders such as epilepsy and autism cause changes in the synapses between neurons and the circuits that connect them.

In addition, they are working on a joint project to establish a neuronal model of neurodevelopmental disorders in human cells. The work takes advantage of Helen’s background in mouse models of neurobiology and Dirk’s expertise with induced pluripotent stem cells.

Dirk Hockemeyer and Helen Bateup
FACULTY AT THE UNIVERSITY OF CALIFORNIA, BERKELEY
Learn science.
Learn something nobody has ever known before.
The David Rockefeller Graduate Program is devoted to advanced education in the biomedical and physical sciences. It seeks to recruit the very best students from around the world, and it offers hands-on training in the laboratory as well as a roster of required and elective courses on general research topics and scientific specialties. Support and mentorship are provided by faculty advisors and the dean’s office.

Curriculum
There is no core curriculum for the Ph.D. In consultation with the dean of graduate studies, students choose a flexible combination of courses totaling seven academic units. Courses toward qualification should be relevant to the intended area of thesis research and are taken in the first and second years.

Financial Support
As part of its mission to educate the next generation of scientific leaders, the university guarantees full financial support for its students in the Ph.D. program. Students pay no tuition and receive a $37,200 annual stipend, as well as a research budget, which may be used toward the purchase of a computer, textbooks, research supplies, and/or travel to scientific meetings. Fellowships for participation in collaborations abroad are also available. Students are expected to engage full-time in advanced study and research; university policy does not permit students to accept compensation from outside activities.

Students who receive competitive fellowships from outside sources will receive a stipend supplement from Rockefeller.

Housing
The university provides subsidized housing for all Ph.D. students. Accommodations include studios with kitchenettes, double and triple suites with shared kitchens, and one-bedroom apartments. All on-campus student rooms have broadband internet access. Rents range from $600 to $1,150 a month.

Benefits
Rockefeller students and their families have the option to be covered by comprehensive health, dental, and vision plans at the university’s expense.

Additional benefits include access to the university’s gym, tennis court, and squash courts, as well as to the university’s Child and Family Center, which provides a full-day early childhood education program for infants, toddlers, and preschoolers on a space-available basis; tuition is based on household income.

For downtime, students may use university-owned cottages located near Bear Mountain State Park, 45 miles north of the city. Access to the cottages is awarded by lottery, and they are available between May and October.
Admissions

The university seeks students who have a natural curiosity about science and demonstrate aptitude, enthusiasm, and commitment to research. Students who enter the Ph.D. program must have received a degree of bachelor or master of arts or sciences, or doctor of medicine or equivalent international qualification. Applicants must demonstrate a high level of achievement in the biological, chemical, mathematical, or physical sciences.

Applications are evaluated by faculty working in a wide range of fields, and they look for students who have demonstrated a commitment to scientific excellence and who they believe will thrive in a flexible, interdisciplinary program. The application process is highly selective. Up to 30 students enter the Ph.D. program each year.

Applications must be submitted online. Applicants must submit a personal letter describing their scientific interests, academic background, and research experience and goals, as well as a biographical data form and at least three letters of recommendation from faculty who can assess their research potential. Official college or university transcripts and GRE general test scores are required for admission. A GRE advanced subject test is strongly recommended. Applicants whose native language is not English must submit evidence of their proficiency in the English language. The application deadline for the Ph.D. program is December 1, 2015, for entrance during the first week of September 2016. An application fee is required.

Selected candidates are invited to interview for a position in the graduate program in March. During these visits, candidates have formal and informal opportunities to meet faculty and students, to visit laboratories and housing facilities, to explore the Rockefeller neighborhood, and to experience the cultural opportunities of New York.

Ph.D. Requirements

To earn the Ph.D. degree, Rockefeller students must complete a thesis comprising a coherent body of novel scientific work. In consultation with the dean and research advisers, students must plan coursework and tutorials to support and complement their thesis research. Students must balance their need for a broad basis of scientific knowledge with the requirement for greater depth of understanding in the particular area of science in which their thesis research will be focused. Students are required to participate actively in courses, discussions, and tutorials and to fulfill designated qualifying requirements. Additional information about course offerings and participation is available upon request.
To apply:

All applications must be submitted online at graduateapplication.rockefeller.edu. Applications must include:

- A personal statement describing your academic background, research experience, and career goals
- An official transcript from each college or university you have attended
- Letters of recommendation from three or four sponsors who can assess your potential for research
- Your General GRE (required) and Advanced Subject GRE (strongly recommended) scores and your TOEFL score (if applying from a non-English speaking country)
- An application fee of $50

The deadline for all application materials is December 1, 2015.

For further information:

Office of Graduate Studies
The Rockefeller University
1230 York Avenue, Box 177
New York, NY 10065
www.rockefeller.edu/graduate
phd@rockefeller.edu
Telephone: 212-327-8086
Fax: 212-327-8505

For information on the Tri-Institutional M.D.-Ph.D. Program:
weill.cornell.edu/mdphd
mdphd@med.cornell.edu
212-346-8033

For information on the Tri-Institutional Training Program in Chemical Biology:
chembio.triiprograms.org
tpcb@triiprograms.org
212-746-5287

The Rockefeller University is accredited by the New York State Board of Regents and the Commissioner of Education, located at 89 Washington Avenue, Albany, NY 12234, 518-474-3852.

The Advisory Committee on Campus Safety will provide upon request all campus crime statistics as reported to the United States Department of Education. Please contact James Rogers in The Rockefeller University Office of Security at 212-327-7030 to request a copy of the report. The U.S. Department of Education’s website for campus crime statistics is ope.ed.gov/security.

It is the policy of The Rockefeller University to support equality of educational and employment opportunity. No individual shall be denied admission to the graduate program of the university or otherwise be discriminated against with respect to any program or the administration of any policy of the university because of race, color, religion, sex, age, national or ethnic origin, citizenship, sexual orientation, veteran status, or disability. The Rockefeller University is committed to the maintenance of affirmative action programs that will assure the continuation of such equality of opportunity.

Published by The Rockefeller University Office of Communications and Public Affairs.
©2015 The Rockefeller University All Rights Reserved.